oy o e
S e a s e R

Seh i e s S e " =
- = - - : = =

L

e ———

"

0
N

B

i

w—— _

e

Al

0

0
i

N

= - - &

1 1969
CENTER

i

e Co

%

Apr

ker

by

Jack Min

90

1 Report 69
-197

002
A STOCHASTIC MODEL OF AN INFORMATION

ica
-21-

NGR
and NsG 398

Techn




Technical Report 69-90 April 1969
NGR-21-002-197
and NsG 398

A STOCHASTIC MODEL OF AN INFORMATION.CENTER

by

Jack Minker

The research for this report was supported in part by Grants NsG 398
and NGR-21-002-197 from the National Aeronautics and Space Administration

to the Computer Science Center of the University of Maryland.



A STOCHASTIC MODEL OF AN INFORMATION CENTER

by

Jack Minker

Abstract

In a recent paper [1] the author investigated a stochastic model
relevant to information handling centers best typified by computer
utilities and document storage and retrieval centers. The growth charac-
teristics of information centers were evaluated for retirement policies
that govern when items are retired from a primary store to a less
accessible store. The results obtained assumed that the primary store was
of unbounded capacity. In this paper we remove this restriction and con-
sider the case where the primary store has a finite capacity.

A set of integral equations is derived for the expgcted number of
items in the primary store. The integral equations depend only upon the
arrival distribution for documents, the request distribution, and the
parameters associated with the retirement policy. No particular Timiting
assumptions have been made with respect to the form of the distributions.

The set of integral equations are solved for document arrivals that
follow a Poisson distribution. The expected value of the size of the store
approaches the result given in [1] as M, the size of the primary store,

becomes unbounded.



1. INTRODUCTION

In this paper we shall be concerned with a mathematical model that
describes a portion of the operation of an information center or a com-
puter utility. Although many papers have been written concerning libra-
ries and information centers, relatively few papers describe mathematical
models. An extensive bibliography on papers discussing the use of 1ibra-
ries has been prepared by DeWeese [2]. The papers cited in that biblio-
graphy generally present a summary of data collected without reference to
mathematical models for describing or predicting the use of books.

Jain [3] reviews some twelve mathematical models that predict the
use of books. In addition, Jain develops a model of his own. The
author [1] has developed a model of a Tibrary that makes use of the char-
acteristics that describe book use to determine the expected size of a
primary data store. This paper is an extension of the author's previous
paper. The work differs from previous work in that others have developed
models to describe how books are used, while we would employ the results
of their work to determine the expected size of a primary store given a
specific retirement policy for documents. The retirement policy for docu-
ments, described in section 2, considers both the age and the use history
of a document.

In the information center under investigation in this paper, and in
[1], two stores for documents are considered: a primary (active) store and
a secondary (retirement) store. Current and frequently-used documents re-
side in the primary store, while less frequently used documents are placed

in the secondary store. A retirement policy is specified that determines



when an item in the primary store is to be retired to the secondary store,
and when an item in the secondary store may be returned to the primary
store.

Although no particular limiting assumptions were made upon the ar-
rival and request distributions, it was assumed that there is only one
class of documents. Hence, one arrival distribution and one request dis-
tribution are applicable for all documents. In [1] no Timit has been
placed on the size of the primary store. In this paper, we shall add a
size limitation; specifically, the primary store may contain at most M
items while the secondary store may become arbitrarily large.

In [1] the authors were able to develop an integral equation expres-
sing the expected size of the primary store. In a similar manner, the
expected number of items in the primary store under the condition that
at most M items may reside there will be determined for arbitrary arrival
and request distributions.

For a Poisson arrival distribution, an explicit expression is found
for the expected member of jtems for an arbitrary request distribution.
As M > «, the expected size of the primary store approaches the result

previously obtained.

2. STOCHASTIC MODEL DESCRIPTION OF THE INFORMATION HANDLING CENTER PROBLEM

Because of the bound, M, on the primary store size, some modifications
must be made to the model described in [1]. For completeness, this paper
contains all the assumptions and definitions as specified in [1]. The re-
tirement and rebirth policy is defined as:

Definition 1: _Retirement Policy and Rebirth Policy

a. An item in the primary store is retired if it arrived more




than T years ago, or if it has been in the primary store at

Jeast X years (X < T) and has been used less than K-times in

the past Y years (X > Y).

b. In the event that the primary store is filled to capacity, the

oldest item in the store is retired whenever a new item arrives.

c. An item in the secondary (or retired) store is placed in the

primary store if it has been requested at least K times in the

previous Y years, provided that it did not arrive more than T

years ago. If there are M items in the primary store, an item

in the secondary store, eligible for the primary store, will re-

place the oldest item in the primary store if it is younger than

that item.

d. If there are less than M items in the primary store, an eligible

item from the secondary store will be shifted to the primary

store.

The above definition modifies [1] to assure that there are at most
M items in the primary store and that the youngest items are to be in the
primary store. We can now define,

Definition 2: PM(w, t) : Let PM(w, t) be the steady state probability

that if an item was requested w years after it arrived, it is eli-

gible to be in the primary store at time t.

Definition 2 differs from the definition of P(w,t) given in [1] only
in that it considers eligible items rather than definitely transferred
items. However, since in [1] no limitation was made on the size of the
primary store, then it follows that PM(w,t)_s P(w,t). We may, therefore,

state the following lemma without proof, since it has been derived in [1].
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Lemma 1: The steady state probability, P(w,t), that an item requested
w years after its arrival is eligible for the primary store t-w years

later is given by

(1) P(w,t) =1 when w < t < X
(2) P(w,t) =0 when w < t and t < T
t-w tow-r S
(3) P(w,t) =t_£_$](r],w)dr] é R](rz,w+r])dr2... é Rl(rK’W+;2iri)drK

t-w-Y
+ R](ro,w) P(w+r0,t)drO when t > X, t-w > Y and t < T
0

and where we define:

Definition 3: R(r,u):R(r,u) = probability that the time to the next

request for an item is < r if the item is requested u years after it arrived

in the system (u > 0). R](r,u) is defined as R](r,u) = %kR(r,u).

Before proceeding with the derivation of the main results, we need

the following definitions:

Definition 4: EM(z): Let EM(z) be the steady state expected number

of items in the primary store z years after the last arrival of a new docu-

ment for a finite primary store of size M.

Definition 5: EM:

items in the primary store for a finite primary store of size M.

Let EM be the steady state expected number of

Definition 6: S, 1.(z|R): Let Sy 1.(le) be the steady-state proba-

bility that there are exactly 1 -items in the primary store z years after

the arrival of a new item, for a primary store of size M, and given that =z

is in region R. The region R may take on one of three values:

-4 -



z < X; X<z<T, which we shall condense to X < z; and finally z > T.

In [1], where M was really unbounded, it was possible to derive the
expected size of the primary store directly by first finding E(z). However,
with a finite M, it is not possible to find an expression for EM(z) directly.
Once the probabilities SM’i(z{R), i =1,...,M are found, it is a straight-
forward matter to obtain EM(z) and EM’ as noted in the following section.

3. STOCHASTIC INTEGRAL EQUATIONS

In this section we shall derive integral equations to determine the
probabilities SM,i(ZIR> that there are exactly i items in the primary
store of size M,z years after the last arrival of a new item given that z
is in region R. It will be convenient to use a shorthand notation for
probabilistic statements. The shorthand notation can be interpreted di-
rectly and is easy to manipulate.

Definition 7: &-Notation. We shall define an infinite sequence,

g = (g], Eoseens gi,...),to represent probabilities of various different
states, starting from the current state £1> at a particular time and rang-
ing backwards in time. The parameters £y may take on the following values.

(a) £ ='1% denotes the probability that the entry under consideration

is in the primary store. If there are less than M items in the
primary store, then the probability of this state is given by
P(w, t).

(b) gi_='Té denotes the probability that the item under consideration

is not in the primary store. If there are Tess than M jtems in
the store, the state probability is given by [1-P(w, t)].
(c) &y = @: denotes the probability one, i.e., a state in which the

izb-item and all earlier items no longer play a role in system

-5 -



operation, and hence, any state is allowed.
(d) Ei = AR: denotes the probability that the 1Eb-document arrives

in the region R.
(e) Ei = RR: denotes the probability that the izh—document does
not arrive in the region R.

(f) £ = AR.'l': denotes the probability that the iEb-item arrived

in the region R and the document is still in the primary store.

(9) E; = AR.'T‘: denotes the probability that the izh-item arrived

in the region R and the document is no lTonger in the primary
store.

Definition 8: Convolution Type Operator *. The convolution type

operator, defined by the operator (*) is to be interpreted as:

A(t) * F(t) = [ dA(t) F (t + 1)
Bq,2

integrated over some region B] o The function A(t) may be replaced

)

either by the function l\R (t) or the function AR (t) and is to be inter-
2 1
preted as the function A(t) without the subscript in the region R2 or

R], respectively.

With the above definitions, we can now state and prove the following
theorem:

Theorem 1: The probabilities SM,i(ZIR) that there are exactly i
items in the primary store of size M,z years after the arrival of a new
document, given that z s in region R 1is expressed by the following re-
cursion relations, where R] is the region z < X and R2 the region
X<z<T.

1.1 The region R]: z <X

(1) _s],](le]) =1



(2.1) S, (2IR)) = 4& ACt) + j dA(t) [1-P(0, th2)] Fy ¢ (t42)
s _ X~z s

where
T-t-z
(t+z) = f dA(t) + f dA(g) [1-P(0, t+z+g)] F, , (t+z+g)
2 1 T-t-z 2,1

(2.2) s, , (z|Ry) = £ dA(t) Sy.1 (t+z|R,) + é dA(t)
9 -7 >

and (3) SM,] (z!R]) = 52’](z|R]) for M = 2,3...
Sw,2 (2IRy) =S5 »(z[Ry)

(\SM M-z (2R = M 1,m-2 (2IRy)
X-z
(4) Sy yop (2[Ry) = f dA(t) Swep Mg (EF2IRy)+ é dA(t) Sy_q y_p(t¥z[Ry)

b4 X-z
(5) SM,M(Z|R1) = gA(t) SM_],M_1(t+z|R2) + é dA(t) SM_1’M_](t+z{R])

=F““T*

For the region R2 we have the following recursion relations:
1.2 The region R,: X <z <T.
(6) sy 1(z[R))

T-
P(o,z) + [1-P(0,2)] é gA(t) S]’](t+z|R2)

i

i

T-z
(7.17) 52,1(z]R2) HZ’](z) + [l—P(o,z)]g dA(t) 52’](t+z|R2)

where
o T-z H2 ](t+z)
Hy 1(z) = P(0,z) [ dA(t) + P(0,2) [ dA(t)[1-P(o,t+z)] —2—
’ T-z 0 P(o,t+z)
T-z T-z
(7.2) 32’2(z|R2)=P(o,z)£ dA(t) 51’]{t+z|R2)+[1—P(o,z)] g dA(t) 52’2(t+z[R2)
and (8) /’éM’](leZ) =5, 1(zIRy) M=2,3,...

) Sw,2(2[Ry) = S3 5(z[R))
t\SM,M—é(ZlRZ) = Sy-1,m-2(2(R))
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oS |

-2 X-z
19) SM,M_](2|R2)= _gA(t) SM_],M_Z(t+z(R2) + é dA(t) Sy-1 M-2(t¥ZIR,)

T-z T~
(10) SM’M(z|R2)=P(o,z) é dA(t)SM_]’M_](t+ziR2)+[1—P(o,z)] é ﬁA(t)SM,M(t+z!Ré

1.3 The region Ry: z > T
(11) SM,i(ZlR3> =0 for all M and all 1.
Proof:

We shall prove the theorem in several stages. We first consider the
case where M = 1, and derive equations (1) and (6). Second, we take the
case M = 2, and derive equations 2.1, 2.2, 7.1 and 7.2. Arbitrary values
of Mare then considered and the remaining equations are derived.

a. M=1.

a.1. The region z < X. The derivation of S]’](z|z<X) is ob-
vious. Since at time O an arrival occurred, the probability that there
is one entry in the primary store is one since z < X and the item must
stay in the store at least X years, unless a subsequent arrival comes
along to replace it.

a.2. The region X <z < T.

4 2 \.} i Tl []
T-z 0 X z T

Figure 1

Since M = 1, we have to consider the various cases in which we could
get an entry in the primary store z years after the last arrival. The
following equations expressed in the g-notation account for the various

cases:



{/’

o, e, )
S]’](zlx_gzgj) = 5 + T, A 1y 95 B )
w (T, AT A1) 0, 9,000

+ 2 2

T

The first term represents the probability that the last item is in the
primary store and we don't care about any other state since, regardless
of what occurs, there can be only one item in the primary store. The
second term represents the probability that the item that arrived last
is not in the store, the item that arrived previously came in the region
R2 and is in the primary store, and we don't care about subsequent items.
The third term represents the probability that the last item to arrive
is not in the primary store, the one previous to that one arrived in the
region R2’ and is not in the primary store, and the one previous to that
item arrived in the region R, after that item and is in the primary
store, and we don't care about subsequent arrivals. Subsequent cases
are clear. From the above discussion and the equation describing
s]’](z|x§;§I), it is readily seen that we may write
51’](le§;§I)='1'+‘T'(A*'1')+'T'(A*'T'(A*'1'))+'T'(A*'T'(A?'T'(A*'1')))+...
where the operator * is given in Definition 8.
It may be seen, readily, that the above series can be factored. One may
merely return to the probabilistic interpretation of the series to de-
velop the factorization. Thus,
']'+'T'£A*{'1‘+‘T‘(A#‘]‘)+'T'(A*'T'(A*'1‘))}]
HTIAXS, (z[X<z<l)1].

S]’](Z]X§;§I)

s]’](z{x5;51)

Translating this expression into probabilistic terms we have,

-9 -



1

‘3
Then,

(6) Si’](z]Rz) = P(o,z) + []-P(o,z)]igsz(t) S],](t+z[R2)

Thus, we have proved equation (6).

P(0,2)
[1-P(0,2)]

it

Hi

b.1. The region z < X, and 52 ](z|z<X).
We first derive S, ](z|z<X). Having developed the significance of
each term in the previous case (derived in a.2), we shall merely employ

the notation developed to derive our result.

R2 R] | |
0 z X
sy~
X-z
= o d
T-z
Figure 2
52’](Z|Z<X) = (|]|’AR1+2’¢,.“ )
o4 ("1L,AL TR LD, )
{ Ry " "Ry
P+ ("1',A, 'TLA, 'TULA L8,..L)
R2 R2 R

2

7

The above are the only cases in which there can be one item in the primary
store, given a maximum primary store of two items and z < X. The above

equations can be rewritten, using the operator * as,
S, 1(2|Ry) = Ao o #AL * ("T'A, )AL * ("T'(A, * ('T'A, ))+...
2,1 1 R]+R2 R2 R2 R2 R2 R2

S, 1(2IR) = By o +ho #10 [R A % (TR YA * (“T*(A
2,1121%) = Pp s, "y, f R, "R, R, MR, Ry )

- 10 -
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We note that the term in the brackets of the last equation may be

written as,
2 2
Transforming the last two equations to probability distribution and

integral forms, we have,
. @ T-z
S, 1(z|Ry) = [ dA(t) + [ dA(t) [1-P(o,t+z)] F, (t+z)
2,1 1 T-z K-z 2,1
(2.]) " o T-t-z
F, 1(t+z) = [ dA(g) + [ dA(g) [1-P(o,t+z+g)] F, ,(t+z+E)
2,1 T-t-z 0 251
as was to be shown.

b.2. The region z<X and 32 2(z}z<X).

] R2 1 R] 1 1 ]
) z X
< T_Z >
Figure 3

We must distinguish two regions, and hence two cases. In the first
case, following the last arrival, there is an arrival in region R1 and,
in the second case at least one item that arrived in region R2’ but not

in region R1 is in the primary store. These are represented by

Case 1: (AR]’ g, 0,... )
Case 2: (AR "1', 9, @,... )
(A : T',A, '1',0 )
+ 1 l’ 1 I, yeee
Ry " 7Ry

+ (A, 'T'LA, ‘T'LA, "1, B,... )
Ry " "Ry W TRy

-1 -



We note, however, that Case 2 is related directly to S ](z|X§;§J).
We may then write,

SZ,Z(ZIR]) = AR] + AR2 * 51’1(2|R2).

Therefore,
X-; T-z
(2.2) 8, ,(z|Ry) = [ dA(t) + [ dA(t) s]’](t+sz2)
0 X-z

which is the desired result.

b.3. The region X<z<T and S, ,(z]X< z<T).

{ R2
0 X Z T
< T"Z >
Figure 4

Using our notation, we may write down the equation directly. Hence,
— 111 R
52’](Z|R2) - ( ] ’ARZ’ﬂ,... )
+('1',A, ‘T, A, L0,...)
Ry Ry

FfOTLA "TA, LB, .. )
Ry Ry

+('T' LA, "1, A, 'TY, A, L0,...)
R, R, R,

+OT A T, A T, A, B, )
Ro Ro Ry

+OT, A T AL T, A, T R LB,.)
R, R, R, R,

Regrouping terms (Def. 8), and using the convclution operator, we have,
SZ,](z}RZ) = Hz’](z) +'T [A*{Sz,](z]Rz)}],
-12-



where

Hy o (2) = '"T'A, + 1" (A®'T' HZ,l(Z)} .
2@ = Ve 10 il

In probabilistic and integral terms we have

: § T-
{’82,1(ZIR2) = Hy 1(z[Ry) + [1-P(0,2)] [ éA(t) S, q(t+z|R,)
(7.1) ¢ 0

o T-
1 Hy 4(2) = P(o,2) [ dA(t) + P(o,z) [ éA(t) [1-P(o,t+z)] HZ,](t+Z)
- T-z ) Plo,t+z

as was to be shown.

b.4. The region X<z<T and S, ,(z|X< 2<T)

The cases for finding exactly two items in the primary store given a
capacity of two items in the primary store and X<z<T are enumerated as:
('1', A'1', @,... )
FCTLANTY, AT B, )
+('T, AT, AT, AN, B,.0)

+('TY, AT, A'TY, B, )
+('T, AT, A'TY, A'TY, 0,..))

+(*TY, AT, AT, A'TY, B )
FOT, AT, AT, A'TY, AYTY, B,

It may be seen readily that these cases reduce to:
Sp.2(z[Ry) = 1" [AX(S; L (z|Ry)I] + 'T' [A*(S, »(z[Rp)11.
Hence,

T-z T-z
(7.2)52 2(ziR2)=P(o,z) { dA(t) S ](t+le2) + [1-P(0,2)] [ dA(t) Sy 2(t+z}R2L
9 O 3 0 9

- 13 -



c. General value of M > 2.

c.1. The region z < X, and Sy .(z|z<X) for i = 1,2,...M-2.

When i = 1, 2,..., M-2, it is clear that the value of SM,1(212<X) is
dependent upon i and not M. Thus, for example, 33,](z]z<X) is identical
to 52’](z]z<x) since the value of M = 3 had no bearing upon the probability
that there is one item in the store. The limiting factor was i, rather
than M. The equations (3) therefore are valid for i =1, 2,..., M - 2,
and we must then derive SM’M_](z]z<X) and SM,M(z|z<X).
c.2. The region z < X, and SM’M_](z|z<X)

Using the convolution operation (Def. 8), SM’M_](zlz<X) is given

by
Sw,m-1(2IRy) = ARZ*SM,M-Z(ZIRZ) s S Sw,u-3(2IRy)
LA
+...+'AR] * Ay, *"'*AE}*ARZ *Sy.1(2[R,)
M-2

+ R ey Sy q(21Ry)

That the above is correct may be seen by considering the following:

2 1
b ] ) i i
s .0 z
L 7 >
Figure 5

In the first term we note that AR represents the probability that there
2
is an arrival in the region R2 preceding the last arrival, and the term

SM M—Z(ZIRZ) denotes the conditional probability that there are exactly

- 14 -



M-2 items in the primary store from that region if z is in RZ‘ The second

term represents the probability that there is an arrival in the region R]

followed by all others in region R2. The next to last term follows the same

pattern. The last term represents the probability that the M-2 arrivals
following the last arrival are in the region R]. There are no other cases
that need to be expressed.

We may rewrite the above equation as
SM,M-1(Z‘Rl)=AR2*5M,M-2(Z‘Rz)*’AR]*{ARZ*SM,M-s(Z‘Rz)‘“'-'+AR1 SR R TR

+ AR]*...*AR]*SM’](ZIR]).

We note, however, that the term in brackets is simply,
M 3

-1 -2 (2 1Ry )-Ap. R, ARi*SM-l,M-Z(ZlRl)’

Then, we may rewrite our equation as,

Sm-1(21R) = Ap *Sy -2 (2 Ry +Ag *Sy_y (2[R )-

As will be noted in Section c.4, SM,M-Z(ZIRZ) = SM—],M-Z(ZIRZ)' Therefore,

T-z X-z
(4) Sy yq1(z|Ry) = X{ZdA(t)SM_1,M_2(t+le2) + g dA(t)Sy_q y-p(t+z(Ry)
is proved as soon as we show Sy M_2(z]R2)

Su-1,m-2(2IRy)

c.3. The region z < X and §, M(z|z<X).

As in Section c¢.2, above, we may write,
Swm(zIRy) = ARZ*SM-1 M-](ZlR2)+AR]*ARZ*SM-2,M-2(ZIRZ)

‘\*A

.. ¥A *A * ..*7\R
1

Ry "Ry
This equation may then be written as,

R2*51,1(ZiR2)+AR]*"‘*AR :

Sum(zlRy) = ARZ*SM-1,M-1(ZIR2)+AR]*SM-1,M-1(Z‘R1)

- 15 -
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Hence,
T-z X-z
(5) " Sy y(zIRy)= { dA(t) Sy_7 mop(t+zIRo)+ [ dA(t) Sy w_1(t+2[R;).
’ _z ] 0 9 l'y

c.4. The region X<z<T and S, $(z|Ry)s 1 = 1,..0, M-2.

The discussion of section c.1, above, applies, where instead of
region R] we replace it with region R2. Hence, equations (8) apply, and
equation 4 is now proved.

c.5. The region X<z<T and SM,M—l(Z'RZ)'

For this region we may write the equation expressing Sy M-1(Z,R2)

directly as,
S,n-1(2[Rp)="1" [hg *Sy_q y-2(2[Rp)IHT" LAg *1" Ap *Sy g y.2(2[Rp)]

*...*AR *AR*S

(z|R,).
9 5 Ry M-1,M-2 2

+1' A '1'ARZ*{SM_]’M_z(z]RZ)}+...+'1' ARZ*'PAR

2
Therefore,
SM,M-l(Z’R2)=']' ARZ*{SM-l,M-2(2|R2)}+']' ARZ*{SM,M-l(ZlRZ)}'
Hence,

T-z T-z
(9) Sy yo1(2IR)=P(0,2) [ dA(£)Sy ; y_o(t+2|R))+[1-P(0,2)] [ dA(t)S) y_1(t+z[R,).
2 o b 0 3

Therefore, (9) has been shown.

c.6. The region X<z<T and SM,M(ZIRZ)‘

SM,M(ZIRZ) is given by
SM,M(ZIRZ) = 7' * ARésM-1,M-1(ZlR2)}+ITI * AR;]‘ *ARESM-l,M-l(ZlR2)}

Foo b TU R P E R AT AT *ARéSM-l,M-](ZIRZ)}'

2 2 2
Therefore,

SM’M(ziRZ) = ' *ARésM—],M-1(Z]R2)} + ' *ARésM,M(ZIRZ)}'
Hence,

T-z T~z
(10)Sy w(zIRy)=P (0,2) [ dA(t)Sy y w.1(t+z|Ry)+[1-P (0,2)] | dA(t)Sy y(t+z[R,)-
’l: 0 3 0 H

- 16 -



We have, therefore, proved Theorem 1.

The probabilities SM’i(z)R) are only of interest to us to help ob-
tain the expected size of the primary store. The following theorem will
now be shown to be valid.

Theorem 2: The expected size of the primary store for a given

bounded primary store of size M is given by the recursion relationship:

(1) Ey = Eyoq t (M-1) [SM+]’M(01R1) - SM,M(OIR1)]
+ M SM+1,M+](°|R1)'

Equation (11) is valid for an arbitrary arrival distribution.

Proof:

Since we have, by Theorem 1, the probabilities Sy 1.(z|R) for 1 = 1,...

and R = R], RZ’ the expected number in the store z years after the last
arrival for a particular region R is, by definition, the sum of the
probability that there are exactly i items in the store times the number
of items i. Thus, by definition,

M
(12) EM(z{R) =3 ] i SM,i(le)'
i=

Again, by definition, we have

Ey é EM(leT)dA(z) + é EM(z]Rz)dA(z).
1 2

Hence,

(13) Ey =

{
- M =

X T
: i {f Sy ;(z[R)dA(z) + £ Sy ;(zIR,)dA(2)} .
= 0 L] ]

Now, (13) can be rewritten by first summing from i=1 to M-2 and

noting that due to the relationships (3) and (8), we can replace M by
M-11n Sy ;(z|R). Then, adding and subtracting an appropriate term to

account for SM—],M—1(Z‘R)’ we obtain
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X |
T -
+ (M-1) [ dA(t) {SM’M_l(thz) - sM_]’M_](thz)}
X
X T
+ M é dA(t) SM,M(t]R]) + M £ dA(t) SM,M(t}RZ).
Now, setting M = M+1 in equation (4), and subtracting equation (4) and
setting z = o, we obtain

;
(18) [ dA(t) Sy y_(tIRy)=Sy_q 1 (t[R1)I=[Syyyq ylolRy)-Sy ylolRy )]
0 s s . ’ >

T
+ { dA(t) {SM—],M—l(t|R1)‘SM,M-1(t|R1)}'
Furthermore, from equation (5) we obtain, by setting M = M+l and z = o,

X T
(16) Syy1 meq(0lRy) = [ dA(t) Sy y(tRy) + £ dA(t) Sy w(tIR,).
2 0 L] 4]

Substituting equations (15) and (16) into (14), we obtain equation (11)
which proves the theorem. We note that no limiting assumptions were
made concerning the form of the distribution A(t).

4. THE EXPECTED SIZE OF THE PRIMARY STORE FOR THE CASE OF POISSON

ARRIVALS OF NEW DOCUMENTS

Using the results of the previous section, the expected size of the
primary store is calculated for a Poisson distribution of arrivals. As

shown in (1), if the primary store is permitted to be unbounded in size,

then
T
(17) p=E =aX+a f P(o,u)du,
X
where

(18) A(t) = 1 - @b |
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The expression for EM will be shown to be related closely to E._.
We first define,
{~Z
(19) HM,i(ZIR]) = i dA(t) SM,i(t+z|R1)

T-z
HM,'i(ZlRZ) = ;[ dA(t) SM’-i(t'i'Z‘Rz).

The following theorem then applies.
Theorem 3: Let A(t) be a Poisson distribution of arrivals of new

1)

documents to a primary store, where A(t) is given by (18). Then, we have

ERCISE
H],](Z|R]) ) 1_equ 002
(20) < S.1(2IRy) = 1 - [1-P (0,2)] exp(-o fmo,v)dv)
Hy (z[R)) =1 - exp(-a ?-P(o,v)dV)

Z

(52,1(Z‘R1) =e P %

Hy 1 (2IR) = o[X-2] ™ &™
H2 2(Z|R]) =1 - & % - ofX-z]e P ¥
(21) ) 52,2(21R1) =1 -¢e P e%?

T 7 T
{P(0,z) +a [ P(o,u)du - oP(0,z) [ P(o,u)du} exp(-a [ P(0,v)dv)
Z z 7

55,1(21Ry)

H2’1(2]R2) = a ! P(o,u)du exp(-a {lP(O,v)dv)

e

T z
SZ,Z(ZIRZ) =1 - {1+ o[1-P (0,2)] £ P(o,u)du} exp(-a [ P(o,u)du)
H, 2(lez) =1-{1+a Plo,u)du} exp(-c jré(o,u)du)

s z z

and

1) For convenience, the notation "exp" and "e" will be used interchangeably to
denote the exponential function.
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(22)

M-2 .
-p Oz M-2 J J
_p e e (az -p oz
Su.m-1(21Ry) = gy + jZ] (-1) =37
f( M-1
. . P(o,u)
M-1 M-1 j j -p az ¢
_p -p oz (-1)"(az) -paz e 'e
Hy o1 (2IRY) = gy et 4 j§1 i ee” - - 1)
ioM-2-3 i
u(zlry) = 1+ T (3 (e T el o
j=0 ’ i=o °
- - j M=1-§ i
Hy (zIR)) = 1-e7X &% 4 "5y lozh ) T g e e
i j=0 i=0 7
T T
Mol fP(o udu -0 oz
+ z .\4
T _IM -1
af P(o,u)du ! T
SM,M-](Z|R2) = =2 =TT = exp(—aAg P(o,u)du)
T M-2 T M-1
ﬁ [ P(o,u)du a  P(o,u)du T
+ Po,z)=% =271 - P(o,z) % =TT exp(-a [ P(o,u)du)
z
T M-1
o i P(o,u)du T
HM,M—](ZIRZ) M=TYT exp(-o g P(o,v)dv)
} |
M-1 ¢ z P(o,u)du T
SymlzlRy) =1 - F = 7] exp(-a [ P(o,v)dv)
? j=o : z

T
+ P(o,u){; / P(o,u)duJ
z

M-1

(M-T)!

) M- 1 [‘ } P(o, u)dJ ’

T
exp (-o [ P{o,v)dv)
z

T

Hy w(z|R,) =1 I
MM Z IR, j=o 5

- 20
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Proof :

That the equations (20),(21), and (22) are correct may be seen by
substituting these equations into equations (1) - (10). Because of the
1éngth of the proof, we shall provide, therefore, only a sketch of how the
formulae were derived.

For M=1 and M=2, the integral equations expressing SM,1(2|R) were
solved by transforming the equations into first order differential equa-
tions. The pattern for the general formulae then became evident. The
general case was then solved by induction on M. More particularly, we may

write, from equation (10), and (19),
™z

SM,M(ZIRZ) = P(0,z) HM_1,M_](Z{R2) + [1-P(0,2z)] i dA(t) SM,M(t+z{R2).

Since A(t) is given by (18), we may differentiate both sides of the equa-
tion and, using both the equation and its derivative, we can transform

this equation into the form

| dP(o0,z)
dSy m(z[Ry) &

5 + TP (0.2) ~—aP(0,2) % SM,M(Z[RZ) =

' dP(0,2)

d
(Z!RZ) + HM-] M-1 (Z‘Rz)i[T—_—p%'zo’—z)] = OLP(O,Z)

o1 M-1 {
P(0,2) —g— ’s

This equation is a first order linear differential equation whose solution

can be determined most readily to be:

*
Sy u(zIR,) = Hy 1 M_](z]Rz) - [1-P(0,2)] exp(a { P(o0,u)du)
) S T

Z v dH_ _(VIR)
{ exp(-a [ P(o,u)du) [ M ],gv] 2 Jdv
T T
Since SM,M(leZ) is dependent upon HM_]’M_1(21R2), by induction we may obtain

the formula for SM,M(Z'RZ)’
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Finally, we have:
Theorem 4: Let A(t) be a Poisson distribution of arrivals given by
(18). Then, the expected number of documents in the primary store given

a maximum size of the primary store of M documents, is given by:

M-1
= -0 J
(23) Ey=FEyq+1-e" ] Q%r
J=0 J:
or
M-1 .
(24) Ey=M-e® ] (Mj)o?
j=o J!
or

I M-1 .
] ] 1 . |
(25) E, =0 +) (-1)9ad 7 (-1)W-1) 5
M j=M 3T i%0 IR EE
T
where p = oX + o [ P(o,u)du = E_ and M > 1.
X

We define EO = 0.
Proof:

Equation (23) can be determined readily. From Theorem 2 we have that
EM is given by equation (11). From equation (22) we know explicit formulae
for SM,M—](ZlRl) and SM,M(ZIR])' If we set z = 0 and substitute these

expressions into (11), we get

Ey = Eyop *+ (M=1) DSy w(olRy) = Sy y(ofR)T + M Sy g (0[Ry)

M-1 - M-2 . M-1 .
Ey.y * (M—])[f)—m—_ﬂe—%— (1-3 _ple“p)] + M [1 -) @J_ e'pJ,

i=0 1! i=0 7!
and hence, performing the algebra, we obtain (23).

Equations (24) and (25) are then obtained most readily by algebraic

manipulation.
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It can be seen from (25), that EM may be written as

Ey = E, * Z " ijJ » Wwhere the Bj are derived from (25).

As M > = , we obtain the result found in [1]. For M sufficiently

large, we may approximate EM by E_ and thereby save considerable compu-

tation time.

5. SUMMARY

The work started in [1] concerning the determination of the ex-
pected size of the primary store of a two level storage system has been
extended to the case of a bounded primary store of size M. Given a
probability distribution describing how requests are made on documents
stored in the system, equation (23) gives a simple recursion formula
for determining the expected size of the store. Lemma 1, derived in
[1], provides an integral equation for determining P(w,t), required
in equation (23). Unfortunately, for some realistic distribution of
R(r,u), it will be difficult to solve the integral equation expressed
in Lemma 1. It would appear that the equations would have to be solved

numerically by digital computer.

- 23 -



[1]

(2]

[3]

Bib1liography

Gurk, H. M. and Minker, J., "Storage Requirements for Information
Handling Centers”. University of Maryland, Computer Science Center,

Technical Report 68-61, February 1968.

De Weese, L. Carroll, "A Bibliography of Library Use Studies".
Purdue University, Lafayette, Indiana, 1967. In Jain, Aridaman K.,
"A Statistical Study of Book Use", Purdue University, Lafayette,
Indiana, 1967. Commerce Clearing House PB176525.

Jain, Aridaman K., "A Statistical Study of Book Use", Purdue
University, Lafayette, Indiana, 1967. Commerce Clearing House

PB176525.

- 24 -



